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Speed selection mechanism for propagating fronts in reaction-diffusion systems with multiple field
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We introduce a speed selection mechanism for front propagation in reaction-diffusion systems with multiple
fields. This mechanism applies to pulled and pushed fronts alike, and operates by restricting the fields to large
finite intervals in the comoving frames of reference. The unique velocity for which the center of a monotonic
solution for a particular field is insensitive to the location of the ends of the finite interval is the velocity that
is physically selected for that field, making thus the solution approximately translation invariant. The fronts for
the various fields may propagate at different speeds, all of them being determined though through this mecha-
nism. We present analytic results for the case of piecewise parabolic potentials, and numerical results for other
cases.
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I. THE SELECTION MECHANISM

In many systems rendered suddenly unstable, propaga
fronts appear. The determination of the speed of a fr
propagating into an unstable state has attracted a lot of a
tion, since it cannot be achieved by simply solving an or
nary differential equation in the comoving frame of referen
on a one-dimensional infinite domain. Indeed, there
many such solutions on such a domain, even though
propagating front in practice always relaxes to a uniq
shape and speed. The selection principles that have been
mulated to determine the observable front, without having
solve directly the partial differential equation of motion for
range of initial conditions, have involved concepts of line
and nonlinear marginal stability, structural stability, and
causality@1#, and all of them try to deal with the puzzle o
the reduction of the multiple solutions to the unique obser
one. All of these selection principles examine the wav
from the viewpoint of the moving front, the correspondin
wave equations being reduced then to ordinary differen
equations involving the speedv of propagation.

These various approaches can be problematic thoug
the case of multiple fields, because not all fields need
propagate at the same speed, while the reduction of the s
partial differential equations to a system of ordinary diffe
ential equations requires that all fields be functions of
same variablex2vt. More recently, a complete analytica
understanding of the propagation mechanism and relaxa
behavior has emerged for those fronts that are ‘‘pul
along’’ by the spreading of linear perturbations about
unstable state, the so-called ‘‘pulled’’ fronts@2#. This under-
standing resulted from a detailed study of the relevant pa
differential equations and explains fully the behavior
pulled fronts. The speed selection mechanism for th
fronts where linear analysis fails, the so-called ‘‘pushe
fronts, is still, however, the subject of ongoing research
the case of multiple fields.

The basic problem is that the ordinary differential equ
tions that govern the motion of uniformly translating fron
do not seem to be able to determine the selected veloc
for the various fields. Indeed, as we said above, the v
1063-651X/2002/65~2!/026122~8!/$20.00 65 0261
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existence of different propagation speeds for the vari
fields makes the examination of the problem from the vie
point of a particular moving frame of reference seem irr
evant.

Let us take, for example, the equations

]f1

]t
5

]2f1

]x2
1f12f1

3 ,

]f2

]t
5D

]2f2

]x2
1f22f2

31Kf1 , ~1!

whereK is positive. The dynamics off1 is always indepen-
dent of that off2, for fields propagating into the unstab
statef15f250. If D,1, both fields move with speedv
52. For D.1, thef1 andf2 fronts propagate with differ-
ent speedsv152 and v252AD, respectively@2#. Clearly,
the equations indicate that iff1 is a function ofx2vt then
f2 should be too. Both fields should be propagating, the
fore, with the same speed, which is the case, however, o
for D,1. In fact, f2 always seems to be moving at th
maximum available speed.

It would appear thus that the fronts in reaction-diffusi
systems with multiple components cannot be properly und
stood in terms of the properties of the ordinary different
equations that describe uniformly translating solutions.
the other hand, the examination of the full coupled par
differential equations is a rather complicated affair, and th
is no universal way for dealing with pushed fronts.

In this paper we present a selection mechanism that
plies to fronts invading both unstable and metastable sta
whether they be pulled or pushed, and that works even
fields propagating at different speeds. Furthermore, it is e
to apply, since it involves examination of the system fro
the viewpoint of a single moving frame, resulting thus
coupled ordinary differential equations.

This mechanism is the straightforward generalization
the speed selection principle presented earlier for the cas
a single field@3#. It exploits the fact that the observed fron
of a particular field is translationally invariant in the como
©2002 The American Physical Society22-1
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ing frame of reference, even on a largefinite interval, in the
sense that its location is effectively independent of the e
of the interval. We shall be solving then the steady st
equations of motion on a large finite interval with respect
a reference frame moving at an arbitrary given speedv, sub-
ject to the appropriate boundary conditions, obtaining a c
tain solution for each field. The solution for a particular fie
however, will have approximate translational symmetry, th
becoming a physically observable front, only for a certa
value of v. It is this valuev* of v that is experimentally
observed during the propagation of that field. Thus the
lected front is the one that is effectively translationally i
variant on a large finite interval, in the comoving frame
reference. Of course, this selected speedv* will not be ap-
propriate, in general, for the other fields, in the sense that
corresponding solutions for the other fields need not h
approximate translational symmetry at that speed.

For values ofv different fromv* the midpoint of the field
will be either at the left or the right end of the finite interva
It is only at v* that the midpoint can be anywhere near t
center of the interval, becoming in fact indeterminate. Thu
graph of the speedv versus the midpoint of the field wil
have aplateauwhenv takes the valuev* . The other fields
will have such plateaus for other values ofv. It is these
plateaus, obtained from the graph ofv versus the midpoints
of the fields, that determine the physically selected spee

Let us illustrate our mechanism with an example. We c
sider the following reaction-diffusion system:
e
ha
e
e

f

el
a

a
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]f i

]t
5

]2f i

]x2
2

]Ui~f i !

]f i
1(

j 5” i
ai j f j , ~2!

where eachUi is a function of the correspondingf i only.
The fixed points of this system of differential equations p
vide the appropriate boundary conditions. Let us now assu
that all fields have monotonic traveling wave solutio
f i(j), wherej5x2vt is the coordinate in a given movin
frame of reference, withv.0. Clearly, not all of these solu
tions need to have translational symmetry. The above pa
differential equations reduce then to the ‘‘steady state’’ or
nary differential equations

d2f i

dj2
1v

df i

dj
2

]Ui~f i !

]f i
1(

j 5” i
ai j f j50. ~3!

We solve these equations on a largefinite interval @L1 ,L2#,
with L1!L2, subject to the boundary conditionsf j (L1)
5pj and f j (L2)5qj , say, wherej runs over all the fields,
and wherepj , qj , andai j are constant.

Let us now concentrate on a particular fieldf i , and let us
find the selected velocity of the corresponding front. Supp
that f i(j) is the solution of Eq.~3! subject to the boundary
conditions mentioned above. There is only one such solu
for a given velocityv. We multiply now Eq.~3! with df i /dj
and integrate fromL1 to L2, obtaining thus
v5

Ui~qi !2Ui~pi !2 1
2 wi

2~L2!1 1
2 wi

2~L1!2(
j Þ” i

ai j E
L1

L2
wi~j!f j~j!dj

E
L1

L2
wi

2~j!dj

, ~4!
.

y

s. In-

able
As
with wi(j)5df i /dj. If f i(j) is going to be a physically
observable front on this large, but finite, interval, it will hav
to be essentially translationally invariant. This means t
df i /dj will be effectively zero in the regions close to th
boundaries,f i having reached its fixed points there. Cons
quentlywi(L1) andwi(L2) will tend to zero, while the inte-
grals *L1

L2wi
2(j)dj and *L1

L2wi(j)f j (j)dj will be finite and

practically independent ofL1 and L2, as L1→2` and L2

→`. Hence the speedv of Eq. ~4! becomes independent o
the endpoints of the interval, acquiring a unique valuev i* . In
other words, only the front with that particular speedv i* can
correspond to an essentially translationally invariant fi
f i . The other fields will not, in general, have translation
invariance at that particular value ofv, but that does not
affect the above argument. Indeed, these other fields alw
appear multiplied by the quantitywi(j), which is zero in the
regions near the boundaries whenv takes the valuev i* cor-
responding to a translationally invariantf i(j). Thus the in-
t

-

d
l

ys

tegral*L1

L2wi(j)f j (j)dj remains independent ofL1 andL2,

even if these other fields have no translational symmetry
The requirement that the frontf i be independent of the

ends of the finite interval, whenv5v i* , selects therefore the
speed

v i* 5

Ui~qi !2Ui~pi !2(
j Þ” i

ai j E
L1

L2
wi~j!f j~j!dj

E
L1

L2
wi

2~j!dj

, ~5!

with L1→2` and L2→`, as the speed of the physicall
observed front for the fieldf i . Note that no distinction has
been made here between metastable and unstable state
deed, givenanyparticular speedv, we can find a front inter-
polating between the stable and the unstable or metast
state, provided the solution is found on a finite interval.
2-2
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SPEED SELECTION MECHANISM FOR PROPAGATING . . . PHYSICAL REVIEW E65 026122
the boundaries go to infinity, the value of the speed is
stricted tov i* and the front becomes the one correspond
to the speed of Eq.~5!.

II. ANALYTIC EXAMPLE

We shall demonstrate the proposed selection princ
through analytic and numerical work. We shall adopt for o
analytic work the following system of dimensionless part
differential equations:

]f1

]t
5

]2f1

]x2
1 f m~f1!,

]f2

]t
5

]2f2

]x2
1 f n~f2!1guf1u, ~6!

whereg.0, m>3, n>3, and

f m~u!5uuu if uuu<1/2,

5m~12uuu! if uuu>1/2. ~7!

This piecewise linear choice for the functionf m(u) results
from a piecewise parabolic potential and will lead to ex
analytic solutions. Piecewise linear representations of non
earities have often provided an analytically rigorous basis
the study of diffusion systems@4#, as well as of nucleation
and crystallization problems@5#, always on the interval
(2`,`).

We shall be looking for uniformly translating solution
functions of the variablej5x2vt, wherev.0 is an arbi-
trary given speed. Thus Eqs.~6! become

d2f1

dj2
1v

df1

dj
1 f m~f1!50, ~8!

and

d2f2

dj2
1v

df2

dj
1 f n~f2!1guf1u50. ~9!

The mirror symmetries of Eqs.~8! and ~9! allow us to work
with positive fields only. So we shall assume, without loss
d

02612
-
g

le
r
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generality, thatf1>0, f2>0. When the fields are con
stant in space and time, they are at their fixed points. Th
fixed points (f1 , f2) are the points~0,0! ~unstable fixed
point!, ~0,1! ~saddle point!, and (1,11g/n) ~stable fixed
point!. We shall be interested in fronts invading the unsta
statef150, f250, so we need to solve Eqs.~8! and ~9!
on thefinite interval @L1 ,L2#, subject to the boundary con
ditions f1(L1)51, f2(L1)511g/n, f1(L2)
50, f2(L2)50, whereL1!0!L2. These boundary con
ditions ensure that the system makes a phase transition
the unstable state to the stable state. Furthermore, we
define the midpointsj1 and j2 of the fields f1 and f2
through the relationsf1(j1)5 1

2 and f2(j2)5 1
2 , respec-

tively, noting that the fields and their slopes have to be c
tinuous at these points.

The dynamics off1 is decoupled from the dynamics o
f2, consequently we can easily find the corresponding so
tion. There are five boundary conditions that must be sa
fied, namely two at the edges, the continuity off1 and of
df1 /dj at j1, and the definition ofj1. On the other hand
the solution of Eq.~8! for the field f1 will involve five
unknown constants for any given value ofv, namelyj1 and
two constants for each linear piece off m(f1). We expect,
therefore, a unique solutionf1(j) for each value ofv.

Indeed, the exact solution of Eq.~8! for the fieldf1 is

f1~j!512
em1(j2L1)2em2(j2L1)

2em1(j12L1)22em2(j12L1)
if L1<j<j1

5
ek1(j2L2)2ek2(j2L2)

2ek1(j12L2)22ek2(j12L2)
if j1<j<L2 , ~10!

where

k15 1
2 ~2v1Av224!, ~11!

k25 1
2 ~2v2Av224!, ~12!

m15 1
2 ~2v1Av214m!, ~13!

m25 1
2 ~2v2Av214m!, ~14!

andj1 satisfies
k1ek1(j12L2)2k2ek2(j12L2)

ek1(j12L2)2ek2(j12L2)
52

m1em1(j12L1)2m2em2(j12L1)

em1(j12L1)2em2(j12L1)
. ~15!
be
n-
The solution of Eq.~15! givesj1 as a function of the spee
v. We note thatm1.0.m2 and k2,k1,0. For a given
value ofv, Eqs.~10!–~15! determine fully the fieldf1(j).

As shown in our earlier work@3#, the graph ofv versusj1
has a plateau atv5vc1, wherevc15(m11)/A2m22. In-
deed, if we requireL1!j1!L2, then Eq.~15! reduces to
k21m150. This equation has a real solution,v5vc1, pro-
videdm>3. In other words, for that particular value ofv the
midpoint j1 can be anywhere in the interval and cannot
determined, rendering thus the front effectively translatio
ally invariant on the finite domain@L1 ,L2#. The valuevc1 is
therefore the selected speed off1 if m>3 ~pushed case!. If
2-3
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v.vc1, thenj1 is close toL1, while for v,vc1 we find that
j1 lies close toL2. The existence of the plateau atvc1 shows
thus that the only value ofv for which the fieldf1 is ap-
proximately translationally invariant isvc1.

Let us now turn our attention to the fieldf2. The relevant
equation must be solved on the three segments determ
by L1 , L2 , j1, andj2. There are seven boundary condition
two at the edges, four from the continuity off2 anddf2 /dj
at the pointsj1 and j2, and the definition ofj2. There are
also seven unknown quantities for a given value ofv, two on
each of the three segments, and one onj2. Note that Eq.~15!
determines the other midpoint. We expect therefore a uni
solutionf2(j) for each given value ofv.

Clearly, if g were zero, then the speed of propagation
f2 would bevc25(n11)/A2n22, and the two fields would
be completely decoupled. We need to examine what happ
for g5” 0. We can obtain some qualitative results by looki
at Eqs.~8! and ~9!. We distinguish two cases.

A. Casevc2Ìvc1

~i! We examine the casev.vc2.vc1 first. Sincev.vc1,
we havej1'L1, as discussed in our earlier work@3#. There-
fore, the fieldf1 falls very rapidly from 1 to 0, and it re-
mains equal to 0 on almost all of the interval@L1 ,L2#. Since
f1 is approximately 0 almost everywhere, Eqs.~8! and ~9!
decouple. Thusf2 behaves as ifg were equal to 0. Since
v.vc2, this implies thatj2'L1. Hencef2 is also 0 practi-
cally everywhere. Both fields are essentially on the fix
point ~0,0!.

~ii ! We examine the casevc2.v.vc1 next. Again j1
'L1, sincev.vc1, hencef1 is essentially 0 on almost all o
the interval. The fields decouple once more, but nowj2
'L2, sincev,vc2. Hence, the fieldf2 is nonzero up to the
point j5L2. The only fixed point that is available for the tw
fields is then the point~0,1!. Thusf1 starts out atL1 having
the value 1 and very rapidly drops down to 0. The fieldf2,
on the other hand, starts out having the value 11g/n at L1,
drops down to the value 1 almost immediately, and the
stays there till it reaches the other edge, where it drops d
to 0. Thus the midpoint off2 shifts abruptly from the left
edge to the right edge the very moment we pass from cas~i!
to case~ii !, i.e., atv5vc2, becausej2'L1 for v.vc2, but
j2'L2 for v,vc2.

~iii ! We examine finally the casevc2.vc1.v. Sincevc1
.v, we havej1'L2. Thereforef1 remains on the value 1
on almost all of the interval, dropping down to 0 only ve
close to the right edge. The only available fixed point for t
two fields is then the point (1,11g/n). Therefore, the field
f2 remains stuck at the value 11g/n almost everywhere
dropping to 0 only very close to the right edge, wherebyj2
'L2. We note that the abrupt shift of the midpoint off1
occurs atv5vc1.

These arguments indicate then that the fieldf1 acquires
approximate translational invariance whenv5vc1, as ex-
pected, since its dynamics is decoupled from the dynamic
f2. At that speed we have a plateau ofv versusj1. On the
other hand, the plateau ofv versusj2 occurs atv5vc2.
Therefore the front off2 propagates with the speedvc2.
02612
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Indeed then, our finite interval mechanism gives the selec
velocities for both fields, in spite of their being different. W
also note that in all likelihoodj1,j2, since in the region
vc1,v,vc2 we found thatj1'L1 andj2'L2.

B. Casevc2Ëvc1

~i! We examine the casev.vc1.vc2 first. Sincev.vc1,
we havej1'L1, as discussed in our earlier work@3#. There-
fore the fieldf1 falls very rapidly from 1 to 0, and it remain
equal to 0 on almost all of the interval@L1 , L2#. Sincef1
is approximately 0 almost everywhere, Eqs.~8! and ~9! de-
couple. Thusf2 behaves as ifg were equal to 0. Sincev
.vc2, this implies thatj2'L1. Hencef2 is also 0 practi-
cally everywhere. Both fields are essentially on the fix
point ~0,0!.

~ii ! We examine the casevc1.v.vc2 next. Now j1
'L2, since v,vc1, hencef1 is stuck on the value 1 on
almost all of the interval. The only fixed point that is ava
able for the two fields then is the point (1,11g/n). That
means thatf2 must be stuck at the value 11g/n on almost
all of the interval, dropping down to 0 only close to the rig
edge. Hencej2'L2. Thus both the midpoints off2 andf1
shift suddenly from the left edge to the right edge the ve
moment we pass from case~i! to case~ii !, i.e., atv5vc1.

~iii ! We examine finally the casevc1.vc2.v. Sincevc1
.v, we havej1'L2. Thereforef1 remains on the value 1
on almost all of the interval, dropping down to 0 only ve
close to the right edge. The only available fixed point for t
two fields is once more the point (1,11g/n). Therefore, the
field f2 remains stuck at the value 11g/n almost every-
where, dropping to 0 only very close to the right edg
wherebyj2'L2.

These arguments indicate then that the fieldf1 acquires
approximate translational invariance whenv5vc1, since its
dynamics is decoupled from the dynamics off2. At that
speed we have a plateau ofv versusj1. On the other hand
the plateau ofv versusj2 occurs also atv5vc1. Therefore
the front of f2 propagates with the speedvc1. In this case
both fields propagate at the same speed.

We note that the fieldf2 always propagates at the max
mum possible speed, i.e.,vc2 in case A andvc1 in case B,
just as the fields of Eqs.~1!. Our finite interval mechanism is
able to handle both cases though. We also note that
speeds of propagation are independent of the coupling c
stantg, irrespective of how large or small it is.

Let us now verify this behavior by solving analyticall
Eq. ~9! to find f2, given the solution of Eq.~10! for the field
f1.

We shall assume thatj1<j2, for the sake of definiteness
This situation is appropriate for the casevc2.vc1, according
to the arguments presented above. If contradictions arise
to this assumption, it will be easy enough to repeat the w
with the contrary assumption. In fact, it turns out that t
relation j1<j2 holds even ifvc2,vc1, in the examples we
shall present.

Let us examine the regionj2<j<L2 first. The boundary
conditions f2(j2)5 1

2 and f2(L2)50 determine the two
constants that will appear in the solution of the ordina
2-4
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differential equation on this interval. Thus the full solutio
for f2 on the interval@j2 ,L2# turns out to be

f2~j!5~j2L2!S 2
ek1(j2L2)

2k11v
1

ek2(j2L2)

2k21v D z1

1g~ek1(j2L2)2ek2(j2L2)!, ~16!
02612
where

z15g/~2ek1(j12L2)22ek2(j12L2)!, ~17!

and
g5

1
2 2~j22L2!@2ek1(j22L2)/~2k11v !1ek2(j22L2)/~2k21v !#z1

ek1(j22L2)2ek2(j22L2)
. ~18!
as-

re
on-
Equation~16! now yields the quantityf28(j2),

f28~j2!5S 2
ek1(j22L2)

2k11v
1

ek2(j22L2)

2k21v D z1

1
2z1~j22L2!

e2k2(j22L2)2e2k1(j22L2)

1
k1ek1(j22L2)2k2ek2(j22L2)

2ek1(j22L2)22ek2(j22L2)
. ~19!

We can now use the known values off2(j2) andf28(j2) as
boundary conditions in order to solve Eq.~9! on the interval
@j1 ,j2#. We find

f2~j!511
z1~ek1(j2L2)2ek2(j2L2)!

n11
1Aen1(j2L2)

1Ben2(j2L2), ~20!

where

n15 1
2 ~2v1Av214n!, ~21!

n25 1
2 ~2v2Av214n!, ~22!

with n1.0 andn2,0,

V152
1

2
2

z1

n11
~ek1(j22L2)2ek2(j22L2)!, ~23!

V25f28~j2!2
z1

n11
~k1ek1(j22L2)2k2ek2(j22L2)!, ~24!

A5exp@2n1~j22L2!#
V22n2V1

n12n2
, ~25!

B5exp@2n2~j22L2!#
V22n1V1

n22n1
. ~26!

We can now use Eq.~20! to find f2(j1) andf28(j1). We get
f2~j1!511
g

212n
1Aen1(j12L2)1Ben2(j12L2) ~27!

and

f28~j1!5~k1ek1(j12L2)2k2ek2(j12L2)!
z1

n11
1n1Aen1(j12L2)

1n2Ben2(j12L2). ~28!

Finally, we can use these values off2 andf28 at j1 in order
to find the solution tof2 in the interval@L1 ,j1#. Imposing
then the boundary conditionf2(L1)511g/n on this solu-
tion leads to the final relation

V22n1V1

5S g

2m22n
1

g

212n D k1ek1(j12L2)2k2ek2(j12L2)

ek1(j12L2)2ek2(j12L2)

3~exp@2~n12n2!~j12L1!#21!en2(j22j1)

1~V22n2V1!exp@~n12n2!~2j21L1!#

1S g

n
1

g

2m22n
2

g

212n D ~n2 exp@2~n12n2!

3~j12L1!#2n1!en2(j22j1). ~29!

We can use this equation to find the plateau off2.
Indeed, let us take the casevc2.vc1 first. If v.vc1, then

we must havej1'L1. In that case we can show that anyj2
that is far fromL1 and L2 will satisfy Eq. ~29!, provided
k21n150, a relation equivalent to the requirement thatv be
equal tovc2. Thusf2 has a plateau abovevc1, at the speed
v5vc2. Note also that the midpointj2 of f2 is already atL2
when the midpoint off1 shifts toL2.

On the other hand, if we look at the casevc2,vc1, then
we see that belowvc1 we must havej1'L2. But since all the
above analytic equations have been derived under the
sumptionj1<j2, we conclude thatj2 must be close toL2 as
well. Thus, when the midpointj1 of f1 shifts abruptly to the
right edge, it forces the midpoint of the other field to go the
as well, provided the analytic equations have solutions c
2-5
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sistent with the assumptionj1,j2. The corresponding be
havior is illustrated by the examples of Figs. 1 and 2, ve
fying thus the qualitative conclusions drawn earlier.
particular, these figures confirm the assumptionj1,j2.

We see then that, ifvc2.vc1, the fieldf2 has a plateau a
the highest speedvc2. If, on the other hand,vc2,vc1, then
f1 pulls f2 and forces it to propagate at the higher spe
vc1. This behavior is seen even when the coupling constag
takes very small values, and matches the behavior of
fields that obey Eq.~1!.

III. NUMERICAL EXAMPLES

We can demonstrate our selection mechanism numeric
as well. Let us examine the following system:

]f1

]t
5

]2f1

]x2
1hb1

~f1!,

FIG. 1. The speedv as a function of the midpoints of the front
invading the unstable state, for the system of Eqs.~8! and~9!, with
L15210, L2510, g59.5, m59, andn519. The plateau is atv
52.5 for f1, and atv5

10
3 for f2. All quantities are dimensionless

FIG. 2. The speedv as a function of the midpoints of the front
invading the unstable state, for the system of Eqs.~8! and~9!, with
L15210, L2510, g54.5, m519, andn59. The plateau is atv
5

10
3 for both f1 andf2. All quantities are dimensionless.
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]f2

]t
5

]2f2

]x2
1hb2

~f2!1gf1 , ~30!

where

hb~u!5
1

b
u~12u!~b1u!. ~31!

It was this particular choice ofh(u) that was used for the
case of a single field when the concepts of linear and n
linear marginal stability were first proposed@6#. That study
found that for 0,b, 1

2 the selected speed of the single fie
for the front invading the unstable state is (2b11)/A2b.

We shall consider values ofb less than1
2 ~pushed case!.

Thus, if the coupling constantg were 0, then the two fields
f1 and f2 of Eq. ~30! would propagate separately, wit
speedsvc15(2b111)/A2b1 and vc25(2b211)/A2b2, re-
spectively.

We have solved Eqs.~30! numerically on a finitej do-
main for theh(u) of Eq. ~31!, assuming that both fields ar
functions of the variablej5x2vt, with g521, b15 1

8 , and
b25 1

18 , subject to the boundary conditionsf1(L1)51,
f1(L2)50, f2(L2)50, andf2(L1)51.5. These values cor
respond to the stable and unstable fixed points~1,1.5! and
~0,0! for the fieldsf1 and f2, the points in other words
where Eqs.~30! acquire uniform solutions. The solutions th
interpolate between these two fixed points are shown in F
3. We can see that the two fields are at the saddle pointf1
50, f251, on almost all of the interval. This feature re
minds us of the dual fronts, where the decomposition fr
the unstable to the stable state proceeds via an interme
saddle point, with the two fields propagating at differe
speeds@7#.

Figure 4 shows the locationsj1 and j2 where the fields
f1 and f2 attain the value1

2 , at a given arbitrary speedv,
when g521, b15 1

8 , andb25 1
18 . We can deduce from this

figure that the fieldf1 propagates with speedvc152.5,

FIG. 3. The solutions of Eqs.~30! that interpolate between th
fixed points ~0,0! and ~1,1.5!, for L15215, L2515, v52.7, g
521, b15

1
8 , and b25

1
18. These solutions lie on the saddle poi

~0,1! on most of the interval.
2-6
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while the field f2 propagates with speedvc25 10
3 . Indeed,

we see that at these velocities there are plateaus ofv versus
the location where each field acquires the value1

2 . In other
words, the location of the midpoint of the front for the fie
f1 or f2 is indeterminate at the corresponding velocityvc1
or vc2, rendering the solution essentially translation invaria
there. We note that the two fronts propagate at differ
speeds, and thatj1,j2.

We have also solved Eqs.~30! for the caseg521, b1
5 1

18 , and b25 1
8 . The unstable fixed point is still the poin

f15f250, but the stable fixed point is the pointf151,
f251.7768, since these values satisfy Eqs.~30!. Hence the
solutions, we seek, have to interpolate between these
fixed points, subject to the boundary conditionsf1(L1)
51, f1(L2)50, f2(L2)50, andf2(L1)51.7768. Figure 5
shows the midpointsj1 and j2 of the two fields at an arbi-
trary speedv. We observe once more that there are the us
plateaus,j1 being again less thanj2. However, both plateau
occur at the speedv5vc15 10

3 . The fieldf2 is pulled byf1
and is forced to propagate atvc1, rather than at its own lowe
speedvc252.5. The existence of the common plateau in
cates once again that at that particular speedvc1 the locations
of the midpoints of the fields become indeterminate, mak
thus the two fields effectively translation invariant.

IV. CONCLUDING REMARKS

We see then that requiring the solution of a field to ha
approximate translational invariance on a finite interval

FIG. 4. The speedv as a function of the midpoints of the front
invading the unstable state, for the system of Eqs.~30!, with L15

215, L2515, g521, b15
1
8 , and b25

1
18. The plateau is atv

52.5 for f1 and atv5
10
3 for f2. All quantities are dimensionless
e
E
v.

02612
t
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the comoving frame of reference results in the selection o
speed for the front. We can adopt then a selection princ
that reads ‘‘the selected front is the one that is approxima
translationally invariant on a large finite interval, with re
spect to the comoving frame of reference.’’ This principle
very easy to implement, especially numerically. Indeed
suffices to solve the moving frame equation on a large fin
interval, for an arbitrary propagation speed. For large spe
we expect the midpoint of the front to be close to the l
boundary. As the speed is lowered, the midpoint sudde
moves to the right boundary. The speedv* at which this
sudden move occurs is the speed selected by the physi
observed front.

Of course, the selection of a certain plateau for a parti
lar field need not include the selection of such a plateau
other fields as well. In fact, the advantage of our mechan
is that the graph of the speed of propagation versus the m
point of each field allows us to find the plateaus for all t
fields, and hence the corresponding physically selected
locities. The approximate translational invariance that e
field acquires as its plateau is reached need not involve
other fields as well.

Thus our mechanism can find the selected velocities
all the fields present in a system of coupled partial differe
tial equations, by simply solving a much simpler system
coupled ordinary differential equations, having assumed
all the fields are traveling at the same arbitrary speedv. The
value of v for which the midpoint of a particular field be
comes indeterminate is the physically selected velocity
that field.

FIG. 5. The speedv as a function of the midpoints of the front
invading the unstable state, for the system of Eqs.~30!, with L15

215, L2515, g521, b15
1

18, and b25
1
8 . The plateau is atv

5
10
3 for both f1 andf2. All quantities are dimensionless.
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