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Speed selection mechanism for propagating fronts in reaction-diffusion systems with multiple fields
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We introduce a speed selection mechanism for front propagation in reaction-diffusion systems with multiple
fields. This mechanism applies to pulled and pushed fronts alike, and operates by restricting the fields to large
finite intervals in the comoving frames of reference. The unique velocity for which the center of a monotonic
solution for a particular field is insensitive to the location of the ends of the finite interval is the velocity that
is physically selected for that field, making thus the solution approximately translation invariant. The fronts for
the various fields may propagate at different speeds, all of them being determined though through this mecha-
nism. We present analytic results for the case of piecewise parabolic potentials, and numerical results for other

cases.
DOI: 10.1103/PhysReVE.65.026122 PACS nuni$)er82.40.Ck, 05.45-a
I. THE SELECTION MECHANISM existence of different propagation speeds for the various

fields makes the examination of the problem from the view-

In many systems rendered suddenly unstable, propagatirgpint of a particular moving frame of reference seem irrel-
fronts appear. The determination of the speed of a frongvant.
propagating into an unstable state has attracted a lot of atten- Let us take, for example, the equations
tion, since it cannot be achieved by simply solving an ordi-
nary differential equation in the comoving frame of reference gy Py 3
on a one-dimensional infinite domain. Indeed, there are T_Fhﬁl_‘ﬁl’
many such solutions on such a domain, even though the
propagating front in practice always relaxes to a unique 3 e
shape and speed. The selection principles that have been for- 92 =D T2 +do— 3+ Koy (1)
mulated to determine the observable front, without having to ot ax? 2 ’
solve directly the partial differential equation of motion for a
range of initial conditions, have involved concepts of linearwhereK is positive. The dynamics ap, is always indepen-
and nonlinear marginal stability, structural stability, and ofdent of that of¢,, for fields propagating into the unstable
causality[1], and all of them try to deal with the puzzle of State¢,=¢,=0. If D<1, both fields move with speed
the reduction of the multiple solutions to the unique observed=2. ForD>1, the ¢, and ¢, fronts propagate with differ-
one. All of these selection principles examine the wavesnt speeds ;=2 and v,=2+/D, respectively[2]. Clearly,
from the viewpoint of the moving front, the corresponding the equations indicate that i, is a function ofx—uvt then
wave equations being reduced then to ordinary differentiatp, should be too. Both fields should be propagating, there-
equations involving the speedof propagation. fore, with the same speed, which is the case, however, only

These various approaches can be problematic though ifior D<1. In fact, ¢, always seems to be moving at the
the case of multiple fields, because not all fields need tenaximum available speed.
propagate at the same speed, while the reduction of the set of It would appear thus that the fronts in reaction-diffusion
partial differential equations to a system of ordinary differ- systems with multiple components cannot be properly under-
ential equations requires that all fields be functions of thestood in terms of the properties of the ordinary differential
same variablex—vt. More recently, a complete analytical equations that describe uniformly translating solutions. On
understanding of the propagation mechanism and relaxatiotme other hand, the examination of the full coupled partial
behavior has emerged for those fronts that are “pulleddifferential equations is a rather complicated affair, and there
along” by the spreading of linear perturbations about theis no universal way for dealing with pushed fronts.
unstable state, the so-called “pulled” fron{ig]. This under- In this paper we present a selection mechanism that ap-
standing resulted from a detailed study of the relevant partigblies to fronts invading both unstable and metastable states,
differential equations and explains fully the behavior ofwhether they be pulled or pushed, and that works even for
pulled fronts. The speed selection mechanism for thoséields propagating at different speeds. Furthermore, it is easy
fronts where linear analysis fails, the so-called “pushed”to apply, since it involves examination of the system from
fronts, is still, however, the subject of ongoing research forthe viewpoint of a single moving frame, resulting thus in
the case of multiple fields. coupled ordinary differential equations.

The basic problem is that the ordinary differential equa- This mechanism is the straightforward generalization of
tions that govern the motion of uniformly translating fronts the speed selection principle presented earlier for the case of
do not seem to be able to determine the selected velocities single field[3]. It exploits the fact that the observed front
for the various fields. Indeed, as we said above, the vergf a particular field is translationally invariant in the comov-
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ing frame of reference, even on a larfigite interval, in the adi P aU(d)
sense that its location is effectively independent of the ends —':—2'— — D A, 2)
of the interval. We shall be solving then the steady state It ox IPi i#i

equations of motion on a large finite interval with respect to

a reference frame moving at an arbitrary given speesub-  where eachJ; is a function of the corresponding; only.

ject to the appropriate boundary conditions, obtaining a cerThe fixed points of this system of differential equations pro-
tain solution for each field. The solution for a particular field, vide the appropriate boundary conditions. Let us now assume
however, will have approximate translational symmetry, thughat all fields have monotonic traveling wave solutions
becoming a physically observable front, only for a certaing;(£), whereé=x—wvt is the coordinate in a given moving
value ofv. It is this valuev* of v that is experimentally frame of reference, with>0. Clearly, not all of these solu-
observed during the propagation of that field. Thus the setions need to have translational symmetry. The above partial
lected front is the one that is effectively translationally in- differential equations reduce then to the “steady state” ordi-
variant on a large finite interval, in the comoving frame of nary differential equations

reference. Of course, this selected spe&dwill not be ap-

propriate, in general, for the other fields, in the sense that the d2¢, dé,  Ui()
corresponding solutions for the other fields need not have — vd—'— _ =+ > a¢=0. 3
approximate translational symmetry at that speed. dé 3 I J#i

For values ob different fromv* the midpoint of the field
will be either at the left or the right end of the finite interval. We solve these equations on a lafgete interval [L,L5],
It is only atv* that the midpoint can be anywhere near thewith L;<L,, subject to the boundary conditions;(L,)
center of the interval, becoming in fact indeterminate. Thus a= p; and ¢;(L,) =q;, say, wherg runs over all the fields,
graph of the speed versus the midpoint of the field will and wherep;, q;, anda;; are constant.
have aplateauwhenuv takes the value*. The other fields Let us now concentrate on a particular field, and let us
will have such plateaus for other values of It is these find the selected velocity of the corresponding front. Suppose
plateaus, obtained from the graphwof/ersus the midpoints that ¢;(£) is the solution of Eq(3) subject to the boundary
of the fields, that determine the physically selected speedsconditions mentioned above. There is only one such solution
Let us illustrate our mechanism with an example. We confor a given velocityy . We multiply now Eq.(3) with d¢; /d¢
sider the following reaction-diffusion system: and integrate froni; to L,, obtaining thus

Lo
ui<qi>—ui<pi>—%w5(Lz>+%w?(Lo—g & | wi(&)ey(£)dé
v= A , (4)
fL w2(£)dé

with wi(§) =d¢;/d€. If #(£) is going to be a physically tegralftiwi(g) $;(£)d¢ remains independent af; andL,,
obsbervable frpn”t on th|s| Ia_rge,”but. f|n|tg, |nter\r/]'?1l, itwil ha\;]e even if these other fields have no translational symmetry.
to be essentially translationally invariant. This means that |4 requirement that the fron#; be independent of the

d¢;/d¢ will be effectively zero in the regions close 10 the o4 of the finite interval, whem=0?* , selects therefore the
boundariesg; having reached its fixed points there. Conse—speed '

quentlyw;(L4) andw;(L,) will tend to zero, while the inte-
grals ftiwf(f)dg and ftiwi(g)¢j(§)dg will be finite and

L
practically independent of; andL,, asL;——« andL, Ui(qi)_Ui(pi)_z ajj 2Wi(§)¢j(§)d§
—o. Hence the speed of Eq. (4) becomes independent of v¥= i = 5
the endpoints of the interval, acquiring a unique valiie In szw?(g)dg
other words, only the front with that particular spe€dcan L

correspond to an essentially translationally invariant field

¢;. The other fields will not, in general, have translational,iin L,——o andL,—, as the speed of the physically
invariance at that particular value of, but that does not  gpserved front for the fields; . Note that no distinction has
affect the above argument. Indeed, these other fields alwayseen made here between metastable and unstable states. In-
appear multiplied by the quantity;(£), which is zero inthe  deed, giverany particular speed, we can find a front inter-
regions near the boundaries wherakes the value{" cor-  polating between the stable and the unstable or metastable
responding to a translationally invariagt(£). Thus the in-  state, provided the solution is found on a finite interval. As
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the boundaries go to infinity, the value of the speed is regenerality, that$;=0, ¢,=0. When the fields are con-
stricted tov]" and the front becomes the one correspondingstant in space and time, they are at their fixed points. These

to the speed of E(5). fixed points @, ¢,) are the pointg0,0) (unstable fixed
point), (0,1) (saddle point and (1,Hg/v) (stable fixed
Il. ANALYTIC EXAMPLE point). We shall be interested in fronts invading the unstable

) __ state¢;=0, ¢,=0, so we need to solve Eg8) and(9)
We shall demonstrate the proposed selection principlgyy thefinite interval[L,,L,], subject to the boundary con-

through analytic and numerical work. We shall adopt for ourgitions b (L)=1, &o(L)=1+0glv, ¢i(L,)
analytic work the following system of dimensionless partial —g  ,(L,)=0, whereL,<0<L,. These boundary con-
differential equations: ditions ensure that the system makes a phase transition from
5 the unstable state to the stable state. Furthermore, we shall
‘9;’51:‘9 ¢1+f (1) define the midpointst; and &, of the fields ¢, and ¢,
gt g2 MY through the relationsp,(&,)=3 and ¢,(£,)=3, respec-
tively, noting that the fields and their slopes have to be con-
Iy Py tinuous at these points.
WZFJFU( b2)+ 9| ¢l (6) The dynamics ofg, is decoupled from the dynamics of

¢,, consequently we can easily find the corresponding solu-
tion. There are five boundary conditions that must be satis-

> = =
whereg=>0, u=3, v=3, and fied, namely two at the edges, the continuity &f and of

f (w=lul if |ul<1/2, d¢,/dé at &1, and the definition of;. On the other hand,
the solution of Eq.(8) for the field ¢, will involve five
=u(l—|u]) if |ul=1/2. (7)  unknown constants for any given valuewfnamelyé; and

two constants for each linear piece ©f(¢;). We expect,
This piecewise linear choice for the functidn(u) results  therefore, a unique solutios,(¢) for each value of.

from a piecewise parabolic potential and will lead to exact |ndeed, the exact solution of E¢(B) for the field ¢, is
analytic solutions. Piecewise linear representations of nonlin-

earities have often provided an analytically rigorous basis for eM(é—L1) _ gMa(é-Ly)

the study of diffusion systemigl], as well as of nucleation (&) =1— - — if Lisésé
and crystallization problem§5], always on the interval 2eMlfmt) —peml&ty

(_ © 100) .

We shall be looking for uniformly translating solutions, _ ehalé~La) —glalé~Lo) i gl 10
functions of the variablé=x—vt, wherev>0 is an arbi- _2ek1(§17L2)_26k2(§17L2) it &=fsL,, (10
trary given speed. Thus Eq&%) become

) where
T 9t g0 ®
a2 Vag M0 k=3 (~v+ o=, (1
and k,=3(—v—\v?—4), (12)
d? d =L+ Voltdn
d;2+vdi;+fy<¢z>+gl¢1l=o. © MR (ToE T A, 9
. _ my=3(—v—\v’+4pu), (14
The mirror symmetries of Eq$8) and (9) allow us to work
with positive fields only. So we shall assume, without loss ofand &, satisfies
|
klek1(§1* Lo) kzek2(§1* L2) mlem1(§1* L) mzemz(é:l* Ly)
eki(é1—Lo) _ gka(é1- L) - eMi(é1—L1) — @ma(é1-Ly) (15

The solution of Eq(15) gives&; as a function of the speed k,+m;=0. This equation has a real solutian=v.;, pro-

v. We note thatm;>0>m, and k,<k;<0. For a given videdux=3. In other words, for that particular value ofthe

value ofv, Egs.(10)—(15) determine fully the fieldp,(&). midpoint &; can be anywhere in the interval and cannot be
As shown in our earlier worf3], the graph ot versus¢;  determined, rendering thus the front effectively translation-

has a plateau at=v.,, wherev,,=(u+1)/y2u—2. In-  ally invariant on the finite domaiplL,L,]. The valuev, is

deed, if we requireL;<¢;<L,, then Eq.(15) reduces to therefore the selected speede®f if u=3 (pushed cagelf
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v>veq, theng, is close toL 1, while forv<wv, we find that  Indeed then, our finite interval mechanism gives the selected
¢, lies close td_,. The existence of the plateauwat; shows  velocities for both fields, in spite of their being different. We
thus that the only value of for which the field¢, is ap-  also note that in all likelihood:; < &,, since in the region

proximately translationally invariant is.; . ve1<v<v., We found thaté;~L,; and &,~L,.
Let us now turn our attention to the fielth,. The relevant
equation must be solved on the three segments determined B. Casev ,<vy
byL,, Ly, &, andé,. There are seven boundary conditions: ) i )
two at the edges, four from the continuity ¢§ andd ¢, /d& (i) We examine the case>v¢1>ve first. Sincev>v,

at the points¢; and &,, and the definition of,. There are We have{;~L,, as discussed in our earlier woi&]. There-
also seven unknown quantities for a given value ofiwvo on  fore the fieldg, falls very rapidly from 1 to 0, and it remains
each of the three segments, and onggarNote that Eq(15) ~ €qual to 0 on almost all of the intervill,,  L]. Sinced,
determines the other midpoint. We expect therefore a uniqui$ approximately 0 almost everywhere, E¢8). and (9) de-
solution ¢,(£) for each given value of. couple. Thg&;&z_ behaves as ify were qual to 0. Slnce_
Clearly, if g were zero, then the speed of propagation for>vc2, this implies that¢,~L;. Hence, is also O practi-
¢, would bev ,=(v+ 1)/,/2,,_2, and the two fields would cal_ly everywhere. Both fields are essentially on the fixed
be completely decoupled. We need to examine what happe@int (0,0). _
for g#0. We can obtain some qualitative results by looking (i) We examine the casec;>v>vc, next. Now &

at Egs.(8) and (9). We distinguish two cases. ~L,, sincev<wvy, henceg, is stuck on the value 1 on
almost all of the interval. The only fixed point that is avail-

able for the two fields then is the point (#3/v). That
means thatp, must be stuck at the valuetlg/v on almost
(i) We examine the case>v,>vy first. Sincev>v 4, all of the interval, dropping down to 0 only close to the right
we have¢;~L 1, as discussed in our earlier woiB]. There-  edge. Hence,~L,. Thus both the midpoints ab, and ¢,
fore, the field¢, falls very rapidly from 1 to 0, and it re- shift suddenly from the left edge to the right edge the very
mains equal to 0 on almost all of the interyél;,L,]. Since moment we pass from casg to case(ii), i.e., atv=v .
¢, is approximately O almost everywhere, E¢B) and (9) (iii) We examine finally the case.;>v,>v. Sincev¢,
decouple. Thusp, behaves as ify were equal to 0. Since >y, we haveé,~L,. Therefore¢, remains on the value 1
V>0, this implies thaté,~L ;. Henceg, is also 0 practi- on almost all of the interval, dropping down to 0 only very
cally everywhere. Both fields are essentially on the fixedclose to the right edge. The only available fixed point for the
point (0,0). two fields is once more the point (XXg/v). Therefore, the
(i) We examine the case.,>v>v.; hext. Again &; field ¢, remains stuck at the value+lg/v almost every-
~L,, sincev>v 4, henceg, is essentially 0 on almost all of where, dropping to 0 only very close to the right edge,
the interval. The fields decouple once more, but néw  wherebyé,~L,.
~L,, sincev<v.,. Hence, the fieldp, is nonzero up to the These arguments indicate then that the figldacquires
pointé=L,. The only fixed point that is available for the two approximate translational invariance whers vy, since its
fields is then the point0,1). Thus ¢, starts out at.; having  dynamics is decoupled from the dynamics ¢§. At that
the value 1 and very rapidly drops down to O. The fig¢l§  speed we have a plateau wfversusé;. On the other hand,
on the other hand, starts out having the valuegly atL,, the plateau ob versus¢, occurs also ab =v;. Therefore
drops down to the value 1 almost immediately, and then ithe front of ¢, propagates with the speed;. In this case
stays there till it reaches the other edge, where it drops dowboth fields propagate at the same speed.
to 0. Thus the midpoint o, shifts abruptly from the left We note that the fieldp, always propagates at the maxi-
edge to the right edge the very moment we pass from @ase mum possible speed, i.a:., in case A andv; in case B,
to case(ii), i.e., atv =v,, because,~L, for v>v,, but  just as the fields of Eq$1). Our finite interval mechanism is
&Er~L, for v<v. able to handle both cases though. We also note that the
(i) We examine finally the case.,>v >v. Sincevg,; speeds of propagation are independent of the coupling con-
>v, we haveé,~L,. Therefore¢, remains on the value 1 stantg, irrespective of how large or small it is.
on almost all of the interval, dropping down to O only very  Let us now verify this behavior by solving analytically
close to the right edge. The only available fixed point for theEq. (9) to find ¢,, given the solution of Eq.10) for the field
two fields is then the point (1;4g/v). Therefore, the field ¢,.
¢, remains stuck at the value+lg/v almost everywhere, We shall assume thdt <¢,, for the sake of definiteness.
dropping to 0 only very close to the right edge, wheréby This situation is appropriate for the casg>uv;, according
~L,. We note that the abrupt shift of the midpoint &f to the arguments presented above. If contradictions arise due
occurs at =uv;. to this assumption, it will be easy enough to repeat the work
These arguments indicate then that the figldacquires  with the contrary assumption. In fact, it turns out that the
approximate translational invariance wherrv.;, as ex- relation&;<¢, holds even ifv.,<v, in the examples we
pected, since its dynamics is decoupled from the dynamics afhall present.
¢,. At that speed we have a plateauwoersusé;. On the Let us examine the regiof,< é<L, first. The boundary
other hand, the plateau af versusé, occurs atv=uv,. conditions ¢,(&,)=3% and ¢,(L,)=0 determine the two
Therefore the front of¢, propagates with the speed.,. constants that will appear in the solution of the ordinary

A. Casev,>v;
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differential equation on this interval. Thus the full solution where

for ¢, on the interval &,,L,] turns out to be

pao=e-Ly| - 2 T, f=gl2eE) _petet) (17)
2 —\g— L2\ — 1
2k1+v 2k2+v
+y(elalémta) - glalénta), (16  and
|
i (G- L[~ el (2K, +v) + ekl (2kyt0) ]2y (18)
I ekiléa—Lo) _ gka(é2-Lo) -
|
Equation(16) now yields the quantityp,(&5),
o ho(§)=1+ 2-1—921/ +Aené L) ggnlé-La)  (27)
ki(é2—L2) Ko(€p—Lo)
efits2— 2 ereléz2—L2
¢2(§2): 2k1+v 2k2+v Z; and
22,6~ L) ,

e kaléa—Lo) _ = k(&2 L)

kyeki(a=La) — ghaléa~L2)

2eki(éa—L2) _ ogkaléa—Lp) (19

We can now use the known values ¢§(£,) and ¢,(£,) as
boundary conditions in order to solve E§) on the interval
[&£1,&,]. We find

z,(eka(e7ka) — ghalé~La)y

= n1(-Lo)
Po(E)=1+ —1 +A¢€
+Ben2(é-L2), (20
where
n=3(—v+v?+4v), (21)
n,=3%(—v—\v?+4v), (22)
with n;>0 andn,<0,
O, =— E _ i(ekl(‘fz*Lz)_ ekz(fszz)) (23
=2 w1 ’

' Z; _ _
92:¢2(§2)—m(k19k1(§2 Lo —kyekeltemt2)), (24)

L + nlAenl(glsz)

! — ki(§1-L2) ka(§1-L2)
(&)= (k€ ko€ ) 1

+n,BeM(é17L2), (28)

Finally, we can use these values®$ and ¢, at £; in order
to find the solution togp, in the interval[L4,&;]. Imposing
then the boundary conditiog,(L,)=1+g/v on this solu-
tion leads to the final relation

klekl(fl— Lo) kzekz("fl— L2)
eki(é1—Lo) _ gka(é1-Lp)

g g
2u—2v  2+2v

X (exg —(n;—Nny) (& —Lq)]—1)eM(é2— )
+(Qo= o Qy)exp (1 —ny) (— 5+ Ly)]

g g g
+(Z+ 2u—2v 2+2v

)(nz exgd —(ny—ny)

X(&—Ly)]—ny)en2e &), (29
We can use this equation to find the plateaupgf

Indeed, let us take the casg,>v first. If v>v.4, then
we must have&,~L,. In that case we can show that a&y
that is far fromL, and L, will satisfy Eq. (29), provided
k,+n,;=0, a relation equivalent to the requirement thdte
equal tov,. Thus ¢, has a plateau abowue,;, at the speed
v=uv.,. Note also that the midpoirg,, of ¢, is already at.,
when the midpoint ok, shifts toL,.

A=exr[—n1(§2—L2)]M, (25 On the other hand, if we look at the casg<v.q, then
N1= Ny we see that below,; we must have;~L,. But since all the

above analytic equations have been derived under the as-
B=ex — ny(&— Lz)]QZ_ Ny . (26) sumptioné;<§&,, we conclude thaf, must be close th, as
n,—n, well. Thus, when the midpoir; of ¢, shifts abruptly to the

right edge, it forces the midpoint of the other field to go there

We can now use Ed?20) to find ¢,(£;) and ¢5(&,). We get  as well, provided the analytic equations have solutions con-
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FIG. 1. The speed as a function of the midpoints of the fronts FIG. 3. The solutions of Eqg30) that interpolate between the
invading the unstable state, for the system of Egsand(9), with fixed points(0,0) and (1,1.5, for Ly=—15, L,=15, v=2.7, g

L;=-10, L,=10, 9:91-05' p=9, andv=19. The plateauis ai  _21 p,=1 andb,= 7. These solutions lie on the saddle point
=25 for ¢y, and at = 7 for ¢,. All quantities are dimensionless. (0 1) on most of the interval.

sistent with the assumptio&, <¢&,. The corresponding be- )
havior is illustrated by the examples of Figs. 1 and 2, veri- ‘9;452:‘9 ¢2+h () +9¢b (30)
fying thus the qualitative conclusions drawn earlier. In gt g2 P2 TP
particular, these figures confirm the assumptgrt &,.

We see then that, if .,>v 4, the field@, has a plateau at where
the highest speed.,. If, on the other handy .,<v.q, then
¢, pulls ¢, and forces it to propagate at the higher speed 1
v¢1. This behavior is seen even when the coupling congtant hp(u)= Eu(l_ u)(b+u). (31)
takes very small values, and matches the behavior of the
fields that obey Eq(l).

It was this particular choice dfi(u) that was used for the
case of a single field when the concepts of linear and non-
. NUMERICAL EXAMPLES linear marginal stability were first proposé6l]. That study

We can demonstrate our selection mechanism numericallfPund that for 6<b<3 the selected speed of the single field

as well. Let us examine the following system: or the front invading the unstable state isb(21)/+/2b.
We shall consider values @f less than; (pushed cage
I, Py Thus, if the coupling constarmg were 0, then the two fields
7:?Jrhbl(qbl), ¢, and ¢, of Eq. (30) would propagate separately, with
X speeds ;= (2b,+1)/\/2b; andve=(2b,+1)/\2b,, re-

spectively.

We have solved Eq930) numerically on a finite¢ do-
main for theh(u) of Eq. (31), assuming that both fields are
functions of the variablé=x—uvt, with g=21, b;=3, and
b,=15, subject to the boundary conditiong,(L;)=1,
#1(L,)=0, ¢,(L,)=0, andg,(L,)=1.5. These values cor-
respond to the stable and unstable fixed poiitd.5 and
(0,0 for the fields ¢, and ¢,, the points in other words
where Eqgs(30) acquire uniform solutions. The solutions that
interpolate between these two fixed points are shown in Fig.
3. We can see that the two fields are at the saddle phjnt
=0, ¢,=1, on almost all of the interval. This feature re-
minds us of the dual fronts, where the decomposition from
the unstable to the stable state proceeds via an intermediate

g saddle point, with the two fields propagating at different
speedg7].

FIG. 2. The speed as a function of the midpoints of the fronts ~ Figure 4 shows the locations and &, where the fields
invading the unstable state, for the system of E8sand(9), with  ¢; and ¢, attain the value;, at a given arbitrary speed,
L,=—10, L,=10, g=4.5, =19, andv=9. The plateau is at wheng=21, b,=3, andb,= 5. We can deduce from this
=12 for both ¢, and ¢,. All quantities are dimensionless. figure that the field¢, propagates with speed.;=2.5,
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-150 75 0.0 75 15.0 5.0 7.5 0.0 75 15.0

s §

FIG. 4. The speed as a function of the midpoints of the fronts
invading the unstable state, for the system of E§6), with L=
—15, L,=15, g=21, b;=%, and b,=75. The plateau is at

=2.5 for ¢, and atv= % for ¢,. All quantities are dimensionless.

FIG. 5. The speed as a function of the midpoints of the fronts
invading the unstable state, for the system of E§6), with L;=
—15, L,=15, g=21, b;=15, and b,=3. The plateau is at
=1 for both ¢, and ¢,. All quantities are dimensionless.

while the field ¢, propagates with speed,,=2. Indeed, the comoving frame of reference results in the selection of a
we see that at these velocities there are plateawsvairsus ~ SPeed for the front. We can adopt then a selection principle
the location where each field acquires the vajuen other ~ that reads “the selected front is the one that is approximately
words, the location of the midpoint of the front for the field translationally invariant on a large finite interval, with re-
¢1 Or ¢, is indeterminate at the corresponding veloaity spect to the comoving frame of reference. .Th's principle 1S
Or v¢», rendering the solution essentially translation invariant’€TY €asy to implement, especially numerically. Indeed, it

X uffices to solve the moving frame equation on a large finite
there. We note that the wo fronts propagate at dlfferen}Snterval, for an arbitrary propagation speed. For large speeds
speeds, and that <é&,.

_ we expect the midpoint of the front to be close to the left
YVe have allso solved Eq$30) for the caseg=21, b, boundary. As the speed is lowered, the midpoint suddenly
=15, andb,=5. The unstable fixed point is still the point mgyes to the right boundary. The speetl at which this

¢1=¢>=0, but the stable fixed point is the poid; =1,  sydden move occurs is the speed selected by the physically
$,=1.7768, since these values satisfy E@)). Hence the gpserved front.

solutions, we seek, have to interpolate between these two of course, the selection of a certain plateau for a particu-

fixed points, subject to the boundary conditiod§(L1)  |ar field need not include the selection of such a plateau for
=1, ¢1(L2)=0, ¢o(L2) =0, and¢,(L,)=1.7768. Figure 5 other fields as well. In fact, the advantage of our mechanism
shows the midpointg; and ¢, of the two fields at an arbi- s that the graph of the speed of propagation versus the mid-
trary speed . We observe once more that there are the usughoint of each field allows us to find the plateaus for all the

plateaus¢; being again less thagy. However, both plateaus  fields, and hence the corresponding physically selected ve-
occur at the speed=v¢,= 7. The field$, is pulled by$;  |ocities. The approximate translational invariance that each

and is forced to propagate @, rather than at its own lower field acquires as its plateau is reached need not involve the
speedv,=2.5. The existence of the common plateau indi-other fields as well.

cates once again that at that particular spegdhe locations  Thus our mechanism can find the selected velocities for
of the midpoints of the fields become indeterminate, makingall the fields present in a system of coupled partial differen-
thus the two fields effectively translation invariant. tial equations, by simply solving a much simpler system of
coupled ordinary differential equations, having assumed that

IV. CONCLUDING REMARKS all the fields are traveling at the same arbitrary speethe

value ofv for which the midpoint of a particular field be-
We see then that requiring the solution of a field to havecomes indeterminate is the physically selected velocity for
approximate translational invariance on a finite interval inthat field.
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